- (T/F) If A is similar to a diagonalizable matrix B, then A is also diagonalizable.
- (T/F) Similar matrices always have exactly the same eigenvalues.

• (T/F) Similar matrices always have exactly the same eigenvectors.

• **(T/F)** If A is similar to a diagonalizable matrix B, then A is also diagonalizable. True.

If  $B = PDP^{-1}$ , where D is a diagonal matrix, and if  $A = QBQ^{-1}$ , then  $A = Q (PDP^{-1}) Q^{-1} = (QP)D(QQ)^{-1}$ , which shows that A is diagonalizable.

 (T/F) Similar matrices always have exactly the same eigenvalues. True. This follows from Theorem 4 in Section 5.2. Recall Theorem 4: Similar matrices have the same characteristic polynomial and hence the same eigenvalues.

## Practices before the class (March 24)

computation in the notes, A is similar to  $D = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix}$ . The eigenvectors for A are

 $\begin{bmatrix} -1\\1 \end{bmatrix}$  and  $\begin{bmatrix} 1\\1 \end{bmatrix}$ , corresponding to the eigenvalues 2 and 8, respectively. But the eigenvectors for *D* can be  $\begin{bmatrix} 1\\0 \end{bmatrix}$  and  $\begin{bmatrix} 0\\1 \end{bmatrix}$ , respecting to the eigenvalues 2 and 8.

**Review of Complex Numbers** 

0

to  $x^2 + 3 = 0?$ Solutions

A complex number is a number written in the form

$$z = a + bi$$

where a and b are real numbers and i is a formal symbol satisfying the relation  $i^2 = -1$ . We can take  $i = \sqrt{-1}$ 

- The number *a* is the **real part** of *z*, denoted by Re *z*,
- and b is the imaginary part of z, denoted by Im z. Note Im z = b, which is a real number.
- Two complex numbers are considered equal if and only if their real and imaginary parts are equal.
- The **conjugate** of z = a + bi is the complex number  $\overline{z}$  (read as " z bar"), defined by

 $\overline{z} = a - bi$ 

**Example 1.** Find all real and complex solutions to the equation  $x^4 + 6x^2 + 9 = 0$ 

$$(x^{*})^{4} + 6x^{2} + 9 = 0 \implies (x^{2} + 3)^{4} = 0 \implies x^{2} + 3 = 0$$
  

$$\Rightarrow x^{2} = -3 \implies x = \pm \sqrt{-3} = \pm \sqrt{3} \cdot \sqrt{-1} = \pm \sqrt{3} \cdot i$$
  
Thus  $x = \pm \sqrt{3} \cdot i$ , each of them has multiplicity 2.  
Example 2. Find all real and complex eigenvalues of the matrice  

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 5 & -5 \end{bmatrix}$$
  
Anys: We solve the characteristic equation  $|A - \lambda I| = 0$   

$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & -1 - \lambda & -1 \\ 0 & 5 & -5 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} -1 - \lambda & -1 \\ 3 & -5 - \lambda \end{vmatrix}$$
  

$$= (2 - \lambda) [(\lambda + 1)(\lambda + 5) + 5]$$
  

$$= (2 - \lambda) (\lambda^{2} + 6\lambda + 10) = D$$
  
Thus  $2 - \lambda = 0 \implies \lambda = 1$   
or  $\lambda^{2} + 6\lambda + (0 = 0 \implies \lambda = \frac{-6 \pm \sqrt{6^{2} - 4 \times 10}}{2} = \frac{-6 \pm \sqrt{6^{2} - 4 \times 10}}{2} = -3 \pm i$   
Thus  $\lambda = \lambda$ ,  $\lambda = -3 + i$  and  $\lambda = -3 - i$ 

## **Real and Imaginary Parts of Vectors**



The real and imaginary parts of a <u>complex vector  $\mathbf{x}$ </u> are the vectors  $\operatorname{Re} \mathbf{x}$  and  $\operatorname{Im} \mathbf{x}$  in  $\mathbb{R}^n$  formed from the real and imaginary parts of the entries of  $\mathbf{x}$ . Thus,

$$\vec{\mathbf{x}} \in \mathbf{C}^{3} \qquad \mathbf{x} = \operatorname{Re}\mathbf{x} + i\operatorname{Im}\mathbf{x} \qquad \operatorname{conjwgate} \quad \text{of } \mathbf{x} = \operatorname{Fe}\mathbf{x} + i\operatorname{Im}\mathbf{x} \qquad \operatorname{conjwgate} \quad \text{of } \mathbf{x} = \operatorname{Fe}\mathbf{x} + i\operatorname{Im}\mathbf{x} \qquad \operatorname{Fe}\mathbf{x} = \begin{bmatrix} 2\\3\\5\\5 \end{bmatrix} = \begin{bmatrix} 2\\3\\5\\5 \end{bmatrix} + i\begin{bmatrix} 0\\2\\2\\5 \end{bmatrix}, \text{ Then } \operatorname{Re}\vec{\mathbf{x}} = \begin{bmatrix} 2\\3\\5\\5 \end{bmatrix}, \operatorname{Im}\vec{\mathbf{x}} = \begin{bmatrix} 1\\0\\2\\5 \end{bmatrix}, \frac{1}{2} = \begin{bmatrix} 2-i\\3\\5\\5-2i \end{bmatrix}$$

## Eigenvalues and Eigenvectors of a Real Matrix That Acts on $\mathbb{C}^n$

Let A be an  $n \times n$  matrix whose entries are real.

Then  $\overline{A}\overline{\mathbf{x}} = \overline{A}\overline{\overline{\mathbf{x}}} = A\overline{\overline{\mathbf{x}}}.$ 

If  $\lambda$  is an eigenvalue of A and  ${f x}$  is a corresponding eigenvector in  ${\Bbb C}^n$ , then

$$A\overline{\mathbf{x}} = \overline{A\mathbf{x}} = \overline{\lambda \mathbf{x}} = \overline{\overline{\lambda \mathbf{x}}}$$

**Remark:** Thus  $\overline{\lambda}$  is also an eigenvalue of A, with  $\overline{\mathbf{x}}$  a corresponding eigenvector. This shows that when A is real, its complex eigenvalues and eigenvectors occur in conjugate pairs. (We will use this fact to simplify the computation in **Example 3**.)

 $\ell^2 \xrightarrow{A} \ell^2$ 

**Example 3.** Let the given matrix  $\mathbf{a}$  acton  $\mathbb{C}^2$ . Find the eigenvalues and a basis for each eigenspace in  $\mathbb{C}^2$ .

$$A = \begin{bmatrix} -3 & -1 \\ 2 & -5 \end{bmatrix}$$

$$AVS: The characteristic equation is  $|A-\lambda I| = 0:$ 

$$\begin{vmatrix} -3-\lambda & -1 \\ 2 & -5-\lambda \end{vmatrix} = (\lambda+3)(\lambda+5)+2 = \lambda^2+8\lambda+17 = 0$$
So the eigenvalues of A are
$$\lambda = \frac{-8\pm\sqrt{8-4}\lambda7}{2} = \frac{-8\pm\sqrt{-4}}{2} = -4\pm i.$$
For  $\frac{\lambda_{1}=-4+i}{2}:$  we solve  $(A-\lambda I)\vec{x}=\vec{0}$ . The augmented matrix:
$$\left[A-(-4+i)\vec{0}\right] = \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx \begin{bmatrix} 1-i & -1 & 0 \\ -1 & 0 \end{bmatrix} \approx$$$$

2

-1-i

0

6

0

D

Notice that R[x(Hi) = R2] so the two rows implies the same eqn: free  $2x_1 + (-1-i)x_2 = 0$ 

$$\begin{cases} x_1 = \frac{1}{2} (Hi) x_2 \\ x_2 \text{ is free} \end{cases} \quad \vec{x} = \begin{bmatrix} \frac{1}{2} (Hi) x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} \frac{1}{2} (Hi) \\ 1 \end{bmatrix}$$

We can choose an eigenvector for 
$$\lambda_1 = -4 + i$$
 to be  
 $\vec{v}_1 = 2 \cdot \left( \frac{1}{2} \cdot (1 + i) \right) = \left( \begin{array}{c} 1 + i \\ 1 \end{array} \right)$ 

For  $\lambda_{2} = -4 - i$ : From the remark above Example 3. We know  $A\overline{v} = \overline{\lambda} \cdot \overline{v}$ , which implies  $A\overline{v}_{1} = \overline{\lambda}_{1} \cdot \overline{v}_{1} = \lambda_{2} \cdot \overline{v}_{1}$  Since A is a real-valued matrix. Thus we can take  $\overline{v}_{2} = \overline{v}_{1} = \begin{pmatrix} 1 - i \\ 2 \end{pmatrix}$  **Example 4.** The transformation  $\mathbf{x} \mapsto A\mathbf{x}$  is the composition of a rotation and a scaling. Give the angle  $\varphi$  of the rotation, where  $-\pi < \varphi \leq \pi$ , and give the scale factor r.

$$A = \begin{bmatrix} \sqrt{3} & 3 \\ -3 & \sqrt{3} \end{bmatrix}$$
  
By the general discussion below. we know  $a = \sqrt{3}$ ,  $b = -3$   
Then  $\lambda = \sqrt{3} \pm 3i$  and  $r = |\lambda| = \sqrt{a^2 + b^2} = \sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{12} = 2\sqrt{3}$   
We need to find  $\varphi$  such that  

$$\int \cos \varphi = \frac{a}{r} = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2}$$
Given  $\varphi = \frac{b}{r} = \frac{-3}{2\sqrt{3}} = -\frac{\sqrt{3}}{2}$ 
From trigonometry.  

$$\varphi = \arctan\left(\frac{-3}{\sqrt{3}}\right) = \arctan(-\sqrt{3})$$

$$= -\frac{\sqrt{3}}{3}$$
 radions.

## **General Discussion:**

- If  $A = \begin{vmatrix} a & -b \\ b & a \end{vmatrix}$ , where a and b are real and not both zero, then the eigenvalues of A are  $\lambda = a \pm bi$ .  $|A - \lambda I| = \begin{vmatrix} a - \lambda & -b \\ b & a - \lambda \end{vmatrix} = (\lambda - a)^{2} + b^{2} = 0 \implies (\lambda - a)^{2} = -b^{2} \implies \lambda - a = \pm bi$  $\implies \lambda = a \pm bi$ ⇒ x = a±hi • If  $r=|\lambda|=\sqrt{a^2+b^2}$  , then  $\|a \pm bi\| = \left[ \frac{a/r}{b} \right] = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$  where  $\int \cos \varphi = \frac{\alpha}{r}$ where  $\varphi$  is the angle between the positive x-axis and the ray from (0,0) through (a,b). See Figure 2. The second point of the above factorization of Im z A is a linear transformation  $R: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ . (a, b) which is often called the Rotation Matrix  $R = \begin{cases} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{cases}$ b Ø -Rez It rotates points in xy-plaine counterclockwise through an angle  $\varphi$  with respect to the positive x-axis about the origin. a **FIGURE 2** 
  - The angle  $\varphi$  is called the **argument** of  $\lambda = a + bi$ . Thus the transformation  $\mathbf{x} \mapsto A\mathbf{x}$  may be viewed as the composition of a rotation through the angle  $\varphi$  and a scaling by  $|\lambda|$ . See Figure 3.



**FIGURE 3** A rotation followed by a scaling.

**Theorem 9.** Let A be a real 2 imes 2 matrix with a complex eigenvalue  $\lambda=a-bi(b
eq 0)$  and an associated eigenvector  ${f v}$  in  ${\Bbb C}^2$ . Then

$$A = PCP^{-1}, \quad ext{where} \quad P = [\operatorname{Re} \mathbf{v} \quad \operatorname{Im} \mathbf{v}] \quad ext{and} \quad C = egin{bmatrix} a & -b \ b & a \end{bmatrix}$$

**Exercise 5.** Let *A* be an  $n \times n$  real matrix with the property that  $A^T = A$ , let **x** be any vector in  $\mathbb{C}^n$ , and let  $q = \overline{\mathbf{x}}^T A \mathbf{x}$ . The equalities below show that q is a real number by verifying that  $\overline{q} = q$ . Give a reason for each step.

$$\overline{q} = \overline{\mathbf{x}}^T A \mathbf{x} = \mathbf{x}^T \overline{A} \overline{\mathbf{x}} = \mathbf{x}^T A \overline{\mathbf{x}} = (\mathbf{x}^T A \overline{\mathbf{x}})^T = \overline{\mathbf{x}}^T A^T \mathbf{x} = q$$
(a) (b) (c) (d) (e)

**Solution.** (a) properties of conjugates and the fact that  $\overline{\mathbf{x}}^T = \overline{\mathbf{x}^T}$ (b)  $\overline{A\mathbf{x}} = A\overline{\mathbf{x}}$  and A is real (c)  $\mathbf{x}^T A \overline{\mathbf{x}}$  is a scalar and hence may be viewed as a 1 imes 1 matrix (d) properties of transposes

(e)  $A^T = A$  and the definition of q