## Practices before the class (March 24)

- (T/F) If $A$ is similar to a diagonalizable matrix $B$, then $A$ is also diagonalizable.
- (T/F) Similar matrices always have exactly the same eigenvalues.
- (T/F) Similar matrices always have exactly the same eigenvectors.


## Practices before the class (March 24)

- (T/F) If $A$ is similar to a diagonalizable matrix $B$, then $A$ is also diagonalizable. True.
If $B=P D P^{-1}$, where $D$ is a diagonal matrix, and if $A=Q B Q^{-1}$, then $A=Q\left(P D P^{-1}\right) Q^{-1}=(Q P) D(\mathbb{Q})^{-1}$, which shows that $A$ is diagonalizable.
- (T/F) Similar matrices always have exactly the same eigenvalues.

True. This follows from Theorem 4 in Section 5.2.
Recall Theorem 4: Similar matrices have the same characteristic polynomial and hence the same eigenvalues.

## Practices before the class (March 24)

- (T/F) Similar matrices always have exactly the same eigenvectors. False. We can refer this as a general fact in the future. One counter-example can be constructed below. Recall Example 1 in Section 5.2, where $A=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$. By the computation in the notes, $A$ is similar to $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 8\end{array}\right]$. The eigenvectors for $A$ are $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$, corresponding to the eigenvalues 2 and 8 , respectively. But the eigenvectors for $D$ can be $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$,respecting to the eigenvalues 2 and 8 .

Review of Complex Numbers
Solutions to $x^{2}+3=0$ ?
A complex number is a number written in the form

$$
z=a+b i
$$

where $a$ and $b$ are real numbers and $i$ is a formal symbol satisfying the relation $i^{2}=-1$. We can take $i=\sqrt{-1}$

- The number $a$ is the real part of $z$, denoted by $\operatorname{Re} z$,
- and $b$ is the imaginary part of $z$, denoted by $\operatorname{Im} z$. Note $\operatorname{Im} z=b$, which is a real number.
- Two complex numbers are considered equal if and only if their real and imaginary parts are equal.
- The conjugate of $z=a+b i$ is the complex number $\bar{z}$ (read as " $z$ bar"), defined by

$$
\bar{z}=a-b i
$$

Example 1. Find all real and complex solutions to the equation $x^{4}+6 x^{2}+9=0$

$$
\begin{aligned}
& \left(x^{2}\right)^{2}+6 x^{2}+9=0 \Rightarrow\left(x^{2}+3\right)^{2}=0 \Rightarrow x^{2}+3=0 \\
& \Rightarrow x^{2}=-3 \Rightarrow x= \pm \sqrt{-3}= \pm \sqrt{3} \cdot \sqrt{-1}= \pm \sqrt{3} i
\end{aligned}
$$

Thus $x= \pm \sqrt{3} i$, each of them has multiplicity 2 .
Example 2. Find all real and complex eigenvalues of the matrice

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & -1 \\
0 & 5 & -5
\end{array}\right]
$$

ANS: We solve the characteristic equation $|A-\lambda I|=0$

$$
\begin{aligned}
& |A-\lambda I|=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & -1-\lambda & -1 \\
0 & 5 & -5-\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{cc}
-1-\lambda & -1 \\
5 & -5-\lambda
\end{array}\right| \\
& =(2-\lambda)[(\lambda+1)(\lambda+5)+5] \\
& =(2-\lambda)\left(\lambda^{2}+6 \lambda+10\right)=0
\end{aligned}
$$

Thus $2-\lambda=0 \Rightarrow \lambda=2$
or $\lambda^{2}+6 \lambda+10=0 \Rightarrow \lambda=\frac{-6 \pm \sqrt{6^{2}-4 \times 10}}{2}=\frac{-6 \pm \sqrt{-4}}{2}=-3 \pm i$
Thus $\lambda=2, \quad \lambda=-3+i$ and $\lambda=-3-i$

The real and imaginary parts of a complex vector $\mathbf{x}$ are the vectors $\operatorname{Re} \mathbf{x}$ and $\operatorname{Im} \mathbf{x}$ in $\mathbb{R}^{n}$ formed from the real and imaginary parts of the entries of $\mathbf{x}$. Thus,

$$
\vec{x} \in \mathbb{C}^{3}
$$

Eg: $\vec{x}=\left[\begin{array}{c}2+i \\ 3 \\ 5+2 i\end{array}\right]=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]+i\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$. Then $\operatorname{Re} \vec{x}=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]$, $\operatorname{Im} \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \frac{k}{\vec{x}}=\left[\begin{array}{c}2-i \\ 3 \\ 5-2 i\end{array}\right]$
Eigenvalues and Eigenvectors of a Real Matrix That Acts on $\mathbb{C}^{n}$
Let $A$ be an $n \times n$ matrix whose entries are real.
Then $\overline{A \mathbf{x}}=\bar{A} \overline{\mathbf{x}}=A \overline{\mathbf{x}}$.
If $\lambda$ is an eigenvalue of $A$ and $\mathbf{x}$ is a corresponding eigenvector in $\mathbb{C}^{n}$, then

$$
A \underline{\mathbf{x}}=\overline{A \mathbf{x}}=\overline{\lambda \mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}}
$$

Remark: Thus $\bar{\lambda}$ is also an eigenvalue of $A$, with $\overline{\mathbf{x}}$ a corresponding eigenvector. This shows that when $A$ is real, its complex eigenvalues and eigenvectors occur in conjugate pairs. (We will use this fact to simplify the computation in Example 3.)

$$
\mathbb{C}^{2} \xrightarrow{A} \mathbb{C}^{2}
$$

Example 3. Let the given matrix actson $\mathbb{C}^{2}$. Find the eigenvalues and a basis for each eigenspace in $\mathbb{C}^{2}$.

$$
A=\left[\begin{array}{rr}
-3 & -1 \\
2 & -5
\end{array}\right]
$$

ANS: The characteristic equation is $|A-\lambda I|=0$ :

$$
\left|\begin{array}{cc}
-3-\lambda & -1 \\
2 & -5-\lambda
\end{array}\right|=(\lambda+3)(\lambda+5)+2=\lambda^{2}+8 \lambda+17=0
$$

So the eigenvalues of $A$ are

$$
\lambda=\frac{-8 \pm \sqrt{8^{2}-4 \times 17}}{2}=\frac{-8 \pm \sqrt{-4}}{2}=-4 \pm i
$$

For $\lambda_{1}=-4+i$ : we solve $(A-\lambda I) \vec{x}=\overrightarrow{0}$. The augmented matrix :

$$
\left[\begin{array}{cc}
A-(-4+i) & \overrightarrow{0}
\end{array}\right]=\left[\begin{array}{ccc}
1-i & -1 & 0 \\
2 & -1-i & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1-i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Notice that $R \mid \times(1+i)=R 2$. So the two rows implies the same eqn:

$$
2 x_{1}+(-1-i) x_{2}^{\ell}=0
$$

Thus $\left\{\begin{array}{l}x_{1}=\frac{1}{2}(1+i) x_{2} \\ x_{2} \text { is free, }\end{array}, \vec{x}=\left[\begin{array}{c}\frac{1}{2}(1+i) x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}\frac{1}{2}(1+i) \\ 1\end{array}\right]\right.$
We can choose an eigenvector for $\lambda_{1}=-4+i$ to be

$$
\vec{V}_{1}=2 \cdot\left[\begin{array}{c}
\frac{1}{2}(1+i) \\
1
\end{array}\right]=\left[\begin{array}{c}
1+i \\
2
\end{array}\right]
$$

For $\lambda_{2}=-4-i$ : From the remark above Example 3. We know $A \overline{\vec{V}}=\bar{\lambda} \overline{\vec{V}}$, which implies $A \overline{\vec{V}}_{1}=\bar{\lambda}_{1} \overline{\vec{V}}_{1}=\lambda_{2} \overline{\vec{V}}_{1}$ since $A$ is $a$ real-valued matrix.
Thus we can take

$$
\vec{V}_{2}=\vec{V}_{1}=\left[\begin{array}{r}
1-i \\
2
\end{array}\right]
$$

Example 4. The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is the composition of a rotation and a scaling. Give the angle $\varphi$ of the rotation, where $-\pi<\varphi \leq \pi$, and give the scale factor $r$.

$$
A=\left[\begin{array}{rr}
\sqrt{3} & 3 \\
-3 & \sqrt{3}
\end{array}\right]
$$

By the general discussion below. We know $a=\sqrt{3}, \quad b=-3$
Then $\lambda=\sqrt{3} \pm 3 i$. and $r=|\lambda|=\sqrt{a^{2}+b^{2}}=\sqrt{(\sqrt{3})^{2}+(-3)^{2}}=\sqrt{12}=2 \sqrt{3}$
We need to find $\varphi$ such that

$$
\left\{\begin{array}{l}
\cos \varphi=\frac{a}{r}=\frac{\sqrt{3}}{2 \sqrt{3}}=\frac{1}{2} \\
\sin \varphi=\frac{b}{r}=\frac{-3}{2 \sqrt{3}}=-\frac{\sqrt{3}}{2}
\end{array}\right.
$$



From trigonometry.

$$
\varphi=\arctan \left(\frac{b}{a}\right)=\arctan \left(\frac{-3}{\sqrt{3}}\right)=\arctan (-\sqrt{3})
$$

$=-\frac{\pi}{3}$ radians .

## General Discussion:

- If $A=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$, where $a$ and $b$ are real and not both zero, then the eigenvalues of $A$ are $\lambda=a \pm b i$.

$$
\begin{aligned}
|A-\lambda I|=\left|\begin{array}{cc}
a-\lambda & -b \\
b & a-\lambda
\end{array}\right|=(\lambda-a)^{2}+b^{2}=0 \Rightarrow(\lambda-a)^{2}=-b^{2} & \Rightarrow \lambda-a= \pm b_{i} \\
& \Rightarrow \lambda=a \pm b i
\end{aligned}
$$

- If $r=|\lambda|=\sqrt{a^{2}+b^{2}}$, then

$$
|a \pm b i|^{\prime \prime} \quad A=\left(r | 1 [ \begin{array} { c c } 
{ a / r } & { - b / r } \\
{ b / r } & { a / r }
\end{array} ] = [ \begin{array} { c c } 
{ r } & { 0 } \\
{ 0 } & { r }
\end{array} ] [ \begin{array} { c c } 
{ \operatorname { c o s } \varphi } & { - \operatorname { s i n } \varphi } \\
{ \operatorname { s i n } \varphi } & { \operatorname { c o s } \varphi }
\end{array} ] \text { where } \left\{\begin{array}{l}
\cos \varphi=\frac{a}{r} \\
\sin \varphi=\frac{b}{r} .
\end{array}\right.\right.
$$

where $\varphi$ is the angle between the positive $x$-axis and the ray from $(0,0)$ through $(a, b)$. See Figure 2 .
The second part of the above factorization of
$\operatorname{Rix}_{1}^{\operatorname{Im} z} \vec{x} \quad A$ is a linear transformation $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
$(a, b)$ which is often called the
Rotation Matrix $R=\left[\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right]$
$\operatorname{Re} z$ It rotates points in $x y$-plaine counterclockwise through an angle $\varphi$ with respect to the positive $x$-axis about the origin.

- The angle $\varphi$ is called the argument of $\lambda=a+b i$. Thus the transformation $\mathbf{x} \mapsto A \mathbf{x}$ may be viewed as the composition of a rotation through the angle $\varphi$ and a scaling by $|\lambda|$. See Figure 3.


FIGURE 3 A rotation followed by a scaling.

Theorem 9. Let $A$ be a real $2 \times 2$ matrix with a complex eigenvalue $\lambda=a-b i(b \neq 0)$ and an associated eigenvector $\mathbf{v}$ in $\mathbb{C}^{2}$. Then

$$
A=P C P^{-1}, \quad \text { where } \quad P=\left[\begin{array}{ll}
\operatorname{Re} \mathbf{v} & \operatorname{Im} \mathbf{v}
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]
$$

Exercise 5. Let $A$ be an $n \times n$ real matrix with the property that $A^{T}=A$, let $\mathbf{x}$ be any vector in $\mathbb{C}^{n}$, and let $q=\overline{\mathbf{x}}^{T} A \mathbf{x}$. The equalities below show that $q$ is a real number by verifying that $\bar{q}=q$. Give a reason for each step.

$$
\begin{array}{r}
\bar{q}=\overline{\overline{\mathbf{x}}^{T} A \mathbf{x}}=\mathbf{x}^{T} \overline{A \mathbf{x}}=\mathbf{x}^{T} A \overline{\mathbf{x}}=\left(\mathbf{x}^{T} A \overline{\mathbf{x}}\right)^{T}=\overline{\mathbf{x}}^{T} A^{T} \mathbf{x}=q \\
\begin{array}{lll}
\text { (a) } & \text { (b) } & \text { (c) }
\end{array} \text { (d) }
\end{array}
$$

Solution. (a) properties of conjugates and the fact that $\overline{\mathbf{x}}^{T}=\overline{\mathbf{x}^{T}}$
(b) $\overline{A \mathbf{x}}=A \overline{\mathbf{x}}$ and $A$ is real
(c) $\mathbf{x}^{T} A \overline{\mathbf{x}}$ is a scalar and hence may be viewed as a $1 \times 1$ matrix
(d) properties of transposes
(e) $A^{T}=A$ and the definition of $q$

